Search results for "CALDERON PROBLEM"

showing 4 items of 4 documents

Recovery of time-dependent coefficients from boundary data for hyperbolic equations

2019

We study uniqueness of the recovery of a time-dependent magnetic vector-valued potential and an electric scalar-valued potential on a Riemannian manifold from the knowledge of the Dirichlet to Neumann map of a hyperbolic equation. The Cauchy data is observed on time-like parts of the space-time boundary and uniqueness is proved up to the natural gauge for the problem. The proof is based on Gaussian beams and inversion of the light ray transform on Lorentzian manifolds under the assumptions that the Lorentzian manifold is a product of a Riemannian manifold with a time interval and that the geodesic ray transform is invertible on the Riemannian manifold.

GeodesicDirichlet-to-Neumann maplight ray transformmagnetic potentialBoundary (topology)CALDERON PROBLEM01 natural sciencesGaussian beamMathematics - Analysis of PDEsFOS: Mathematics111 Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Uniqueness0101 mathematicsMathematics::Symplectic GeometryMathematical PhysicsMathematicsX-ray transformSTABILITYinverse problemsMathematical analysisStatistical and Nonlinear PhysicsRiemannian manifoldX-RAY TRANSFORMWave equationMathematics::Geometric TopologyManifoldTENSOR-FIELDS010101 applied mathematicsUNIQUE CONTINUATIONGeometry and TopologyMathematics::Differential GeometryWAVE-EQUATIONSHyperbolic partial differential equationAnalysis of PDEs (math.AP)
researchProduct

Partial data inverse problems for Maxwell equations via Carleman estimates

2015

In this article we consider an inverse boundary value problem for the time-harmonic Maxwell equations. We show that the electromagnetic material parameters are determined by boundary measurements where part of the boundary data is measured on a possibly very small set. This is an extension of earlier scalar results of Bukhgeim-Uhlmann and Kenig-Sj\"ostrand-Uhlmann to the Maxwell system. The main contribution is to show that the Carleman estimate approach to scalar partial data inverse problems introduced in those works can be carried over to the Maxwell system.

Inverse problemsELECTRODYNAMICSINFORMATIONadmissible manifoldsWEIGHTSMathematics::Analysis of PDEsBoundary (topology)InverseBOUNDARY-VALUE PROBLEMCALDERON PROBLEMpartial data01 natural sciencesMATERIAL PARAMETERSinversio-ongelmatsymbols.namesakeMathematics - Analysis of PDEsFOS: Mathematics35R30 35Q61111 MathematicsMaxwellin yhtälötBoundary value problemUniqueness0101 mathematicsPartial dataMathematical PhysicsMathematicsAdmissible manifoldsApplied Mathematicsta111010102 general mathematicsMathematical analysisScalar (physics)Inverse problemCarleman estimatesSmall set010101 applied mathematicsUNIQUENESSMaxwell's equationsMaxwell equationsLOCAL DATAsymbolsAnalysisAnalysis of PDEs (math.AP)
researchProduct

Inverse problems for elliptic equations with power type nonlinearities

2021

We introduce a method for solving Calder\'on type inverse problems for semilinear equations with power type nonlinearities. The method is based on higher order linearizations, and it allows one to solve inverse problems for certain nonlinear equations in cases where the solution for a corresponding linear equation is not known. Assuming the knowledge of a nonlinear Dirichlet-to-Neumann map, we determine both a potential and a conformal manifold simultaneously in dimension $2$, and a potential on transversally anisotropic manifolds in dimensions $n \geq 3$. In the Euclidean case, we show that one can solve the Calder\'on problem for certain semilinear equations in a surprisingly simple way w…

Mathematics - Differential GeometryGLOBAL UNIQUENESSGeneral MathematicsConformal mapCALDERON PROBLEMTransversally anisotropic01 natural sciencesinversio-ongelmatMathematics - Analysis of PDEsSimple (abstract algebra)Euclidean geometryFOS: Mathematics111 MathematicsApplied mathematics0101 mathematicsMathematicsInverse boundary value problemosittaisdifferentiaaliyhtälötCalderón problemGeometrical opticsSemilinear equationApplied Mathematics010102 general mathematicstransversally anisotropicInverse problemManifold010101 applied mathematicssemilinear equationNonlinear systemDifferential Geometry (math.DG)inverse boundary value problemLinear equationAnalysis of PDEs (math.AP)Journal de Mathématiques Pures et Appliquées
researchProduct

Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations

2021

We study various partial data inverse boundary value problems for the semilinear elliptic equation $\Delta u+ a(x,u)=0$ in a domain in $\mathbb R^n$ by using the higher order linearization technique introduced in [LLS 19, FO19]. We show that the Dirichlet-to-Neumann map of the above equation determines the Taylor series of $a(x,z)$ at $z=0$ under general assumptions on $a(x,z)$. The determination of the Taylor series can be done in parallel with the detection of an unknown cavity inside the domain or an unknown part of the boundary of the domain. The method relies on the solution of the linearized partial data Calder\'on problem [FKSU09], and implies the solution of partial data problems fo…

inverse obstacle problemGeneral MathematicsMathematics::Analysis of PDEsInverseBoundary (topology)Schiffer's problemCalderon problempartial data01 natural sciencesDomain (mathematical analysis)inversio-ongelmatsymbols.namesakeMathematics - Analysis of PDEsLinearizationTaylor series111 MathematicsFOS: MathematicsSchiffer’s problemBoundary value problem0101 mathematicsMathematicsosittaisdifferentiaaliyhtälötCalderón problem010102 general mathematicsMathematical analysisInverse problemElliptic curvesymbolssimultaneous recoveryAnalysis of PDEs (math.AP)
researchProduct